LARGE PRIMES AND FERMAT FACTORS

JEFF YOUNG

Abstract

A systematic search for large primes has yielded the largest Fermat factors known.

Introduction

Over the last two years, the author has done a systematic search for large primes of the form $N=k \bullet 2^{n}+1$. These primes were then checked to determine if they were Fermat factors. This search has resulted in finding the largest known primes of this type.

Implementation

The test used to determine whether a given A is prime is Theorem 102 from Hardy and Wright [2]. This theorem states.

Let $n \geq 2, k<2^{n}$ and $N=k \bullet 2^{n}+1$ be a quadratic nonresidue $(\bmod p)$ for some odd prime p. Then the necessary and sufficient condition for N to be a prime is that

$$
p^{(N-1) / 2} \equiv-1(\bmod N) .
$$

The program was coded in FORTRAN 77 and run on the CRAY-ELS computer system. This is the entry level system from Cray Research, Inc. It has the full functionality of the larger systems used to find the largest known Mersenne primes, but runs with a 30 ns clock.

The first task in showing that N is prime is to find a prime p for which N is a quadratic non-residue. This was done by simply trying the primes in order until a suitable value was found. In all cases, we never had to use a prime greater than 37.

Because of the special form $k \bullet 2^{n}+1$ of N, the computation of $p^{(N-1) / 2} \equiv-1$ $(\bmod N)$ consists mostly of repeated squaring of numbers with $n+\log _{2}(k)$ bits. The squaring was done via the usual Schoenhage-Strassen multiplication algorithm using FFTs. The reduction $(\bmod N)$ was accomplished by doing a single-precision divide of the upper half of the squared result by k. To see why this is sufficient, let
$X=A \bullet 2^{n}+B$, where $0 \leq A<k^{2} \bullet 2^{n}, 0 \leq B<2^{n}$. Then we have the following:

$$
\begin{aligned}
X & =A \bullet 2^{n}+B \\
& =(k \bullet Q+R) \bullet 2^{n}+B, \quad \text { where } 0 \leq Q<k \bullet 2^{n}, 0 \leq R<k \\
& =\left(2^{n} k\right) Q+2^{n} R+B \\
& =(N-1) Q+2^{n} R+B \\
& =2^{n} R+(B-Q)+Q N \\
& \equiv 2^{n} R+(B-Q)(\bmod N) .
\end{aligned}
$$

The single-precision divide of A by k can thus be used instead of a more complicated algorithm such as Algorithm D from Knuth [3].

Results

The author searched the following areas for primes:

$$
\begin{aligned}
k=3, & 40000 \leq n<310000 \\
5 \leq k \leq 7, & 40000 \leq n<300000 \\
9 \leq k \leq 17, & 40000 \leq n<200000 \\
19 \leq k \leq 31, & 400000 \leq n<100000 \\
33 \leq k \leq 63, & 12000 \leq n<50000
\end{aligned}
$$

k	n
3	42294426654468548150551825997380190157169213321303093
5	125413209787240937
7	544868806695330207084283034
9	43963470034990267943114854127003145247147073149143
11	93279105741
13	4385688018109258114296
15	433884844461758184290
17	99231
19	73338
21	47337558289100894801
23	none found
25	5748866872
27	4416450696
29	8811796947
31	7659693168
33	3724942685478056137274148
35	22645273216196368281
37	23014324245935462350
39	2022121882256542843730325314853359337393463626242966971 772428219194449
41	none found
43	2986233526
45	29240320183845748612
47	none found
49	48666
51	20733208072670345541
53	none found
55	none found
57	2074225010268382962345435
59	224552911534437
61	none found
63	20746246333005334074

Searching these areas extends the work of Dubner and Keller [1] to the indicated values. The table above gives the new values of k and n for which $k \bullet 2^{n}+1$ is prime.

All of the pairs (k, n) were tested to determine if they were Fermat factors. The following factors were found:

$$
\begin{aligned}
& 57 \bullet 2^{25010}+1 \text { divides } F_{25006}, \\
& 21 \bullet 2^{94801}+1 \text { divides } F_{94798}, \\
& 7 \bullet 2^{95330}+1 \text { divides } F_{95328}, \\
& 13 \bullet 2^{114296}+1 \text { divides } F_{114293}, \\
& 5 \bullet 2^{125413}+1 \text { divides } F_{125410}, \\
& 3 \bullet 2^{157169}+1 \text { divides } F_{157167}, \\
& 3 \bullet 2^{213321}+1 \text { divides } F_{213319}, \\
& 3 \bullet 2^{303093}+1 \text { divides } F_{303088} .
\end{aligned}
$$

All eight of these primes are larger than the previously largest known Fermat factor $5 \bullet 2^{23473}+1$ which divides F_{23471}.

Error analysis

There are several ways errors can occur in this search:
(1) An invalid sieve is used and some potential candidates for the primality test are skipped.
(2) A number is declared prime which is really composite.
(3) A number is declared composite which is really a prime.

All pairs (k, n) which were removed via the sieve were then checked with another program written in C and run on a SPARCstation 5 . With different hardware and software, we are confident that type-1 errors did not occur.

Several of the numbers reported below (including two of the Fermat factors) were checked by Harvey Dubner using his own software and the Cruncher. We feel that this type of confirmation eliminates type-2 errors.

As for type-3 errors, there is really no way of knowing if they have occurred unless the entire search is rerun and compared against the original residues. However, Harvey Dubner has also checked several composites and we agree on the final residues. We feel that this minimizes the chances of a type-3 error.

When using the FFT squaring technique, care must be taken to avoid overflow and underflow conditions. The CRAY library routines SCFFT and CSFFT were used. These routines have been analyzed previously by Cray Research to determine the maximum number of bits per word which were recoverable for a given length vector. After squaring, a checksum was calculated for further assurance of correctness.

The reduction step can also be checksummed. Let $b=$ bits per word. From above, we have

$$
X=2^{n} R+(B-Q)+Q N
$$

And so,

$$
C_{X} \equiv 2^{n} C_{R}+\left(C_{B}-C_{Q}\right)+C_{Q} \bullet C_{N}\left(\bmod 2^{b}-1\right), \text { where } C_{t} \equiv t\left(\bmod 2^{b}-1\right)
$$

Now C_{t} can be quickly calculated by adding the elements of the vector which comprises t and folding it every b bits.

Acknowledgments

I would like to thank my wife Debra and son Nealon for their patience, Harvey Dubner and Wilfrid Keller for being faithful and inspirational colleagues, Wayne Roiger for keeping the faith, and Cray Research for the machine resources.

References

1. H. Dubner and W. Keller, Factors of generalized Fermat numbers, Math. Comp. 64 (1995), 397-405. MR 95c:11010
2. G. Hardy and E. Wright, The theory of numbers, 4th ed., Oxford Univ. Press, 1975.
3. D. Knuth, The art of computer programming, vol. 2, Addison-Wesley, 1969. MR 44:3531

655F Lone Oak Drive, Eagan, Minnesota 55121
E-mail address: jsy@cray.com

